Numerical method for elliptic multiscale problems
نویسندگان
چکیده
منابع مشابه
Analysis of the finite element heterogeneous multiscale method for nonlinear elliptic homogenization problems
An analysis of the finite element heterogeneous multiscale method for a class of quasilinear elliptic homogenization problems of nonmonotone type is proposed. We obtain optimal convergence results for dimension d ≤ 3. Our results, which also take into account the microscale discretization, are valid for both simplicial and quadrilateral finite elements. Optimal a-priori error estimates are obta...
متن کاملA Framework for Adaptive Multiscale Methods for Elliptic Problems
We describe a projection framework for developing adaptive multiscale methods for computing approximate solutions to elliptic boundary value problems. The framework is consistent with homogenization when there is scale separation. We introduce an adaptive form of the finite element algorithms for solving problems with no clear scale separation. We present numerical simulations demonstrating the...
متن کاملReduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems
The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is often computationally prohibitive, there is a need for a novel computational algorithm able to capture the effective behav...
متن کاملHigh-Order Multiscale Finite Element Method for Elliptic Problems
In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulat...
متن کاملDiscontinuous Galerkin Multiscale Methods for Elliptic Problems
Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...
متن کاملReduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh resolution down to the finest scales and multiscale methods capable of capturing the large scale components of the solution on macroscopic mesh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Num. Math.
دوره 16 شماره
صفحات -
تاریخ انتشار 2008